POTENTIAL ROOT SERVER FUTURES

David Conrad
david.conrad@icann.org
ICANN
AGENDA

- How we got here
- Current status
- What problem are we trying to solve?
- Possibilities
HOW WE GOT HERE

(FROM: HTTP://WWW.DONELAN.COM/DNSTIMELINE.HTML)

- May 1984: First test server (USC-ISIF) run at USC-ISI
- Jul 1984: SRI-NIC (ARPANet: 10.0.0.51, MILNet: 26.0.0.73)
- Jul 1985: ISIB (10.3.0.52) added
- Oct 1985: ISIC (10.0.0.52) and BRL-AOS (192.5.25.82, 128.20.1.2) added
- Oct 1986: IANA requests more root servers
 - Nov 1986, root servers now:
 - SRI-NIC.ARPA 10.0.0.51 26.0.0.73 ; JEEVES
 - USC-ISIC.ARPA 10.0.0.52 ; JEEVES
 - BRL-AOS.ARPA 192.5.22.82 128.20.1.2 ; BIND
 - USC-ISIA.ARPA 26.3.0.103 ; JEEVES
 - Mar 1987: All root servers now use domain names
 - Nov 1987: Remove C.ISI.EDU, add GUNTER-ADAM.ARPA, C.NYSER.NET, TERP.UMD.EDU, and NS.NASA.GOV.
 - Apr 1990: NS.NIC.DDN.MIL (192.67.67.53) added
- Jul 1991: NIC.NORDU.NET added
- Apr 1993: NS.INTERNIC.NET added
- Apr 1994: AOS.BRL.MIL renamed AOS.ARL.ARMY.MIL
- May 1994: KAVA.NISC.SRI.COM removed, NS1.ISI.EDU added
- Sep 1994: NS.ISC.ORG added
- Aug 1995: ROOT-SERVERS.NET introduced, existing root servers renamed “A”-“I”
 - Jan 1997: “J” and “K” added, operated by Network Solutions
 - Feb 1997: “L” and “M” added, operated by USC-ISI
 - May 1997: “K” moved to London, operated by RIPE
 - Aug 1997: “M” moved to Tokyo, operated by WIDE
CURRENT STATUS

• 13 root server letters
 • Operated by 12 organizations (3 non-US) across 466 sites in dozens of countries.

• DNSSEC-signed zone
 • No undetected modifications possible, at least with validating resolvers

• ICANN’s RSSAC provides a venue for root server operators and interested stakeholder to coordinate
 • Not control
WHAT PROBLEMS ARE WE TRYING TO SOLVE?

• Distance/time to root server?
 • Particularly important for NXDOMAIN

• Root server overload?
 • E.g., (D)DoS

• Network Partitioning?
 • Inability to reach a root server

• Inappropriate management?
 • Making changes outside of policy
DISTANCE TO ROOT SERVERS

• Current sustained query load on “L” about 25,000 qps, so…
 • Assume same load on all root servers:
 • 13 x 25,000 = 325,000 qps
 • Current average query about 200 bytes
 • 325,000 x 200 = 65 MBps or 520 Mbps
 • Worst case response: about 1500 bytes
 • 325,000 x 1500 = 487.5 MBps or 3.9 Gbps
• Commodity servers and COTS software can do 200K qps easily
 • A couple of machines on 10GigE at a few IXes
Accidental or malicious breaks in connectivity can remove access to root servers:

- By root servers: root zone data will go stale
- By clients: failure to resolve
INAPPROPRIATE MANAGEMENT

• Examples
 • Serving different answers depending on who asks
 • Out of policy changes to TLDs
• Not a problem root servers can solve
 • With DNSSEC, both require resolvers to have different trust anchors

• Root servers are a publication mechanism
 • No editorial control
• With DNSSEC, only the holder of the Zone Signing Key can change zone contents
POSSIBILITIES

- Add more servers
 - Add more instances
 - Add new letters
- Change the rules
 - “Unowned anycast”
 - Mirroring the root zone
ADD MORE INSTANCES

- ISC (F), NetNod (I), RIPE (K), and ICANN (L) and possibly others all willing to add instances for pretty much any requester, anywhere
 - Terms and conditions vary
 - Requires entering into some sort of agreement with a Root Operator
 - No change to protocol required

- Can reduce latency
 - Need to identify locations for new instances
 - Can reduce global damage due to DoS
 - Localizes traffic
 - If you’re near a lot of sources, too bad
 - Can reduce risk of network partition
 - At least for folks outside the partition
ADD MORE LETTERS

• Stay under 512 byte limit
 • Get rid of root-servers.net, move root servers to “a.”, “b.”, etc.?
 • Get rid of root glue in response
 Additional section?
• Increase response size
 • Maybe fragmentation isn’t that bad?
 • Move to TCP?
• Hard problem:
 • How to decide who operates the new letter?
 • Who decides?

• Does not solve any technical problem by itself
 • It all depends on how the new letter is implemented
CHANGE THE RULES

- “Unowned Anycast”: draft-lee-dnsop-scalingroot
 - Can do this today, but…
 - Potential stale data
 - Potential network management challenges
- Mirror the root zone in resolvers: draft-wkumari-dnsop-root-loopback
 - Can do this today, but…
 - Potential stale data
- Both require improved zone distribution system
 - A Content Delivery Network for DNS
 - Statistics/monitoring?
- Both drafts can address latency
 - Moves responder to the end user’s ISP or resolver operator
- Both drafts can mitigate DoS
 - The flood would be customer traffic
 - Both drafts would reduce the effect of partition
 - At least until the root zone expires
OTHER POSSIBILITIES?

• Adding more instances addresses latency to root servers, root server overload, and network partition concerns with no protocol changes and no policy development
 • “Mirroring the Root” and “Unowned Anycast” are both a variation of adding more instances
• DNSSEC prevents inappropriate management (assuming global multi-stakeholder management is appropriate)
• DNSSEC means you don’t have to care where you got the root zone.
• Adding more instances does not address non-technical problems.
 • How many root server (letters) do we really need?